A Note on Carnot Geodesics in Nilpotent Lie Groups
نویسنده
چکیده
We show that strictly abnormal geodesics arise in graded nilpotent Lie groups. We construct such a group, for which some Carnot geodesics are strictly abnormal and, in fact, not normal in any subgroup. In the 2-step case we also prove that these geodesics are always smooth. Our main technique is based on the equations for the normal and abnormal curves, that we derive (for any Lie group) explicitly in terms of the structure constants.
منابع مشابه
Chaotic Geodesics in Carnot Groups
Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geodesic flow on any Carnot group is completely integrable. We prove this conjecture is f...
متن کاملA Non-integrable Subriemannian Geodesic Flow on a Carnot Group
AND Abstract. Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geo-desic ow on any Carnot group is completely integrable. We prove this co...
متن کاملThe Large Scale Geometry of Nilpotent Lie Groups
In this paper, we prove results concerning the large scale geometry of connected, simply connected nilpotent Lie groups equipped with left invariant Riemannian metrics. Precisely, we prove that there do not exist quasi-isometric embeddings of such a nilpotent Lie group into either a CAT0 metric space or an Alexandrov metric space. The main technical aspect of this work is the proof of a limited...
متن کاملExtremal Polynomials in Stratified Groups
We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.
متن کاملPrecise Estimates for the Subelliptic Heat Kernel on H-type Groups
We establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie groups G of H-type. Specifically, we show that there exist positive constants C1, C2 and a polynomial correction function Qt on G such that C1Qte − d2 4t ≤ pt ≤ C2Qte d2 4t where pt is the heat kernel, and d the Carnot-Carathéodory distance on G. We also obtain similar bounds on the norm of its subellip...
متن کامل